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Exercise 1: Data Structures - Heapsort (2+2+2+2+2 Points)

We can employ a binary min-heap to sort a sequence of n distinct keys in an ascending order as
follows. First, we insert all keys one by one with the Insert operation. Then, we obtain the sorted
sequence by removing all n keys with Delete-Min.

(a) Show that Heapsort takes Θ(n log n) if the input sequence is sorted descending.

(b) Show that Heapsort takes Θ(n log n) if the input sequence is sorted ascending.

Assume that you have two binary min-heaps that only allow manipulation via the operations Get-Min,
Insert, Delete-Min, Decrease-Key, Get-Size and Is-Empty and may have duplicate keys.

(c) Give a protocol that merges two heaps of size n and m, where m < n, in time O(m log n) and
prove the runtime.

(d) For arbitrary m and n, where m < n, give two binary min-heaps of size m and n where the
Merge protocol takes Ω(m log n).

(e) For arbitrary m and n, where m < n, give two binary min-heaps of size m and n where the
Merge protocol takes O(m).

Sample Solution

From the lecture we know that the run-time of Insert and Delete-Min is upper bounded by O(log n)
(in a tree of size n). This gives an upper bound of O(n log n) for Heapsort.

(a) Consider the input-sequence (n, n−1, . . . , 1). It remains to be shown that the run-time of Heapsort
with this input sequence is lower bounded by Ω(n log n).

Inserting these keys into the heap from left to right always violates the min-heap rule and the new
key has to be moved to the root of the heap since it is the smallest at the time it is inserted.

Moving an element from a leaf to the root takes Ω(log(treesize)) many operations, since the new
element swaps positions with its parent as long as it is smaller. A binary heap of size n has Ω(n/2)
leaves and Ω(n/2) non-leaf nodes.

Since the last bn2 c keys are inserted into a tree of size at least Ω(n/2), moving those elements to
the root takes at Ω(n2 log(n2 )) = Ω(n log n) time, and we have our claim.
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(b) Consider the input-sequence (1, . . . , n−1, n). We show that the run-time of Heapsort with this
input sequence is lower bounded by Ω(n log n).

Since the input sequence is already sorted, we never have to fix the heap when we insert the keys
(in fact we get a run-time of O(n) to insert all elements).

Due to the given input sequence the dn2 e leaves of the complete binary tree1 contain the biggest
keys of the input sequence. This structure makes Delete-Min costly.

To delete an element we remove the root, return it, then we cut the ’last’ element2 and transfer
it to the root instead. Then we fix the heap by ’sifting’ the root ’down’ as long as it violates the
heap property.

Starting from the heap containing the complete sequence (1, . . . , n−1, n), the first dn2 e Delete-Min
operations move one of the dn2 e biggest keys from a leaf to the root.

In order to repair the tree after each deletion the new root has to be ’sifted down’ to a leaf again
by swapping it Ω(log n

2 ) times with the smallest of its current children. Therefore the first dn2 e
deletions take Ω(dn2 e log n

2 ) = Ω(n log n) time.

(c) The following procedure merges two binary heaps.

Algorithm 1 Merge(H1, H2) . wlog we assume |H1|> |H2| (check is easy with Get-Size)

while not H2.Is-Empty do
H1.Insert(H2.Delete-Min) . insert all elements from H2 into H1

return H1

Let n := |H1| and m := |H2|. We do m deletions in H2 for at most O(m logm)⊆O(m log n) time.
We insert the m deleted values into H1, which takesO(m log(m+n)) ⊆ O(m log(2n)) = O(m log n).

Remark: A min-heap can be implemented such that Get-Size and Is-Empty take O(1) time.

(d) Let H1, H2 be the heaps to be merged and let n := |H1|, m := |H2|. We give a worst case example
for arbitrary m < n to show the worst case lower bound.

Let the smaller heap H2 contain small keys (1, . . . ,m) and let the larger heap H1 contain larger
keys (m+1, . . . , n+m+1). Observe that this structure makes Insert costly. In specific inserting
all keys of in H2 into H1 costs Ω(m log(n)) (cf. (a)).

(e) Presume that all the keys in the smaller heap are equal but larger than all the keys in the larger
heap. We perform the merge with m Delete-Min operations on the smaller heap and m Insert

operations on the larger. Notice that deleting from the smaller heap is O(1) since we don’t have
to fix the heap after deleting an element since all are equal. Furthermore inserting into the larger
heap is in O(1), since we do not have to fix the heap. This leads into a runtime of O(m).

Exercise 2: Union-Find (5+5 Points)

(a) In the lecture the union-by-size heuristic was introduced to guarantee shallow trees when imple-
menting a Union-Find data structure. Another heuristic that can be used for union(x,y) is the
union-by-rank heuristic. For the heuristic, the rank of a tree is defined as follows:

(1) The rank r(T ) of a tree T consisting of only one node is 0.

(2) When joining trees T1 and T2 by attaching the root of tree T2 as a new child of the root of
tree T1, the rank of the new combined tree T is defined as r(T ) := max{r(T1), r(T2) + 1}.

1In a complete bin. tree all layers except the last have max. number of nodes. Nodes in the last layer are aligned left.
2by order of going from top layer to bottom layer of the tree and from left to right within layers.
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When applying the union-by-rank heuristic, whenever combining two trees into one tree (as the
result of a union operation), we attach the tree of smaller rank to the tree of larger rank (if both
trees have the same rank, it does not matter which tree is attached to the other tree). Provide
pseudo-code for the union(x,y) operation when using the union-by-rank heuristic.

Show that when implementing a Union-Find data structure by using disjoint-set forests with the
union-by-rank heuristic, the height of each tree is at most O(log n).

(b) Demonstrate that the above analysis is tight by giving an example execution (of merging n elements
in that data structure) that creates a tree of height Θ(log n). Can you even get a tree of height
blog2 nc?

Sample Solution

(a) Algorithm 2 union(x,y) . Assert that find(x) 6= find(y)

r← find(x), p← find(y) . Get representatives of x,y
if r.rank ≥ p.rank then

p.parent ← r

r.rank ← max{r.rank, p.rank+1}
return r

else
r.parent ← p

p.rank ← max{p.rank, r.rank+1}
return p

Remark: As in the lecture n is the number of make set operations, i.e. the number of ’nodes’.

The claim that any given tree in the forest has rank at most O(log n), is obviously true if we can
show that a tree with k nodes has rank at most blog2 kc. We show this via induction on k.

Induction Base: For k = 1 we have a single root node with rank 0 = blog2 1c.
Induction Hypothesis: Presume the claim is true for all trees with number of nodes < k.

Induction Step: Now let T be a tree with k nodes. The tree T was created with a union(T1, T2)

operation where the trees T1, T2 have k1, k2 < k many nodes. W.l.o.g. let k1 ≥ k2.

If r(T1) > r(T2) then r(T ) = r(T1) ≤ blog2 k1c ≤ blog2 kc.

If r(T1) < r(T2) then r(T ) = r(T2)
IH
≤ blog2 k2c ≤ blog2 kc.

If r(T1) = r(T2) then

r(T ) = r(T1)+1 = r(T2)+1
IH
≤ blog2 k2c+1 ≤ blog2 2k2c

k=k1+k2≥2k2
≤ blog2 kc.

Remark: Another possible solution is to argue that the rank equals the height of the tree and use
the fact that ’most of ’ the inner nodes have at least two children to upper bound the height.

(b) We construct a tree from n single node trees (created with make set) that has height (rank)
blog2 nc using the union operation. First we do the construction under the assumption n = 2k for
some k ∈ N0 and then we show how to construct a tree of height blog2 nc for arbitrary n.

For n = 2k we do the following iteratively until just one tree is left: We merge all remaining roots
from the previous iteration (initially single-node trees) pairwise with union. Note that we call
union only on the roots, so no path compression takes place! Since n is a power of two, with each
iteration the number of trees in the Union-Find structure halves hence we have k iterations. In
each iteration the trees are symmetric (same number of nodes and same topology). Therefore the
rank of the trees increases by one in each iteration. Thus the rank of the remaining tree after k
iterations is k = log2 n.

For arbitrary n let k ∈ N0 such that 2k ≤ n < 2k+1 (the biggest power of two smaller equal n).
Now we do the same procedure as above for only 2k of the n nodes to obtain a single tree with
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2k nodes that has rank k. Then we use the union operation to merge this tree directly with the
n − 2k nodes left over (if any). The rank of these single nodes is smaller than the rank k of the
tree we constructed before (unless n = 1 in which case we don’t have leftover nodes). Thus the
rank of the bigger tree remains the same when we merge it with the single nodes, i.e. it still has
rank k. Since k = log2 2k ≤ log2 n < log2 2k+1 = k + 1 we have blog2 nc = k.

We have shown that there exist trees for the Union-Find data structure (by rank variant) with
rank blog2 nc. Additionally we saw in part (a) that any given tree of our Union-Find structure
has rank smaller equal blog2 nc. Hence the worst case rank is exactly blog2 nc = Θ(log n).

Remark: For the question whether you can give a tree of height blog2 nc, ’yes’ sufficed as answer.

Exercise 3: Max Flow (6 Points)

You are given a (connected) directed graph G = (V,E), with positive integer capacities on each edge, a
designated source s ∈ V , and a designated sink t ∈ V . Additionally you are given a current maximum
s− t flow f : E → N.
Now suppose we increase the capacity of one specific edge e0 ∈ E by one unit. Show how to find a
maximum flow in the resulting graph with the manipulated capacity in time O(|E|).

Sample Solution

We construct the residual graph of the manipulated graph in time O(|E|). Then we search the residual
graph for a path from s to t with a simple Breadth/Depth First Search in O(|E|) where we consider only
edges with residual capacity > 0. If there is no augmenting path, the previous flow is still maximal.
If we find an augmenting path from s to t, the flow can be increased by one along this path.

Exercise 4: Network Flow (4+4+6 Points)

Professor Adam has two children who, unfortunately, dislike each other. The problem is so severe
that not only do they refuse to walk to school together, but in fact each one refuses to walk on any
street that the other child has used. The children have no problem with their paths crossing at street
intersections. Fortunately both the professor’s house and the only school in town are on intersections,
but beyond that he is not sure if it is going to be possible to send both of his children to the only
school in town. The professor has a map of his town given as a graph G = (V,E), where E are the
streets and V are the intersections.

(a) Show how to formulate the problem of determining whether both his children can go to the school
in town as a maximum flow problem.

(b) What algorithm from the lecture would you use to solve the problem? Assuming that for a street
network G = (V,E), we have |E| ≤ 3|V |, what is the asymptotic running time of your algorithm
as a function of the number of nodes n = |V |?

(c) Now, assume that the two children start disliking each other even more and they now only accept
to go to the school if their walks also avoid crossing some of the intersections. Assume that we
are given a subset U ⊆ V of intersections and we now need to find two paths from the professor’s
home to the school such that every intersection in U and every street is part of at most one of the
two paths. You can of course assume that the professor’s home and the school are not in U .

How can you now reduce the problem to a maximum flow problem?

Sample Solution

(a) Given the city map, we construct a graph where each node represents an intersection, and node
a and b are connected to each other if and only if there is street between the corresponding
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intersections to nodes a and b. Let the home be in the intersection corresponding to node s, and
the school be in the intersection corresponding to node t. Direct all the adjacent edges of s as
outgoing edges. Direct all the adjacent edges of t as incoming edges. Moreover, replace all other
edges in the graph by two directed edges in opposite directions. Label all the edges with 1 as their
edge capacity.

If the maximum flow in this graph from s to t is at least 2, then there exist two “street disjoint”
paths from s to t. The reason is that the flow has two paths (“streams”) of size 1 which are edge
disjoint. If it so happens that one path (s, . . . , x, u, v, y . . . , t) uses and edge (u, v) and the other
path (s, . . . , p, v, u, q . . . , t) uses the edge (v, u) in the opposite direction we can always omit both
edges (u, v),(v, u) by simply redirecting the paths: (s, . . . , p, y . . . , t), (s, . . . , x, q . . . , t). Doing this
for each instance where an edge is used in both directions, we obtain two “street disjoint” paths
and hence the children can go to school as desired.

(b) To find out whether the maximum flow is at least than 2 or not we only need to run at most two
iterations of the Ford-Flukerson Algorithm. It takes 2 · O(|E|) rounds which is O(n).

(c) We replace each node v ∈ U by two nodes vin and vout. Then we connect all the incoming edges
of v to vin, and we connect vout to each of the nodes that v has an outgoing edge to. We then
connect vin and vout with a directed edge from vin to vout with capacity 1. We run the algorithm
again to find out whether the maximum flow is at least 2. If it is, then it means there are two
paths from s to t such that these path are edge disjoint and also node disjoint with respect to the
nodes in U , otherwise not.
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